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ABSTRACT 

In this paper, we have estimated the values of one and two missing observations using the regression method of 

analysis. Again, we estimated the value of same missing observations (one and two) by expressing the regression data in 

the format of randomized block design data. In this investigation, we observed that the estimated value of the missing 

observation(s) come out to be more or less same. This procedure has been shown by taking two suitable examples.             

Further, we analyzed the data to obtain ANOVA table using both the methods, where we found the same significant result. 
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1. INTRODUCTION 

For the statistical procedure in Design of Experiments, the matrix presentation of the data of a randomized 

complete block design is similar to that of the exhibit of a factorial experiment with two factors being studied at different 

levels. When there is a missing value in the dataset of a randomized block design, we obtain the estimate of missing value 

using least square method of estimation and then carry out the analysis of variance using the estimated value of the missing 

observation. Regression analysis provides a mathematical relationship between the response variable and the factors 

affecting it. The expression of relationship obtained by regression can also give an estimate of the missing value, so that 

the further analysis can be performed. A study of the relation between the Analysis of Variance and Regression Analysis 

techniques has been carried out by Arner [1] and Karen [5] in the context of data analysis. For the statistical analysis 

procedure, regression analysis, requirement of the data is in the form of response variable values and the values of the 

factors affecting it, without considering the levels of the factors involved. In a variation of this, the statistical procedure 

design of experiments requires the data in the form of response variable values being affected by different levels of the 

factors involved.  

1.1. Analysis of Variance 

The statistical tool Analysis of Variance is applied to analyze the data of a Design of experiment. Fisher [4] 

introduced the term ‘Analysis of Variance’ and defined it as the separation of variance ascribable to one group of causes 

from the variance ascribable to the other group. Under this technique, the total variation in the sampled data is divided into 

components of variation due to different independent factors. Each of these estimates of the variations due to assignable 

factors is compared with the estimate of the variation due to chance factor and identified whether the variation due to the 

assignable cause is significant or not. 
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1.2. Randomized Complete Block Design 

If an experiment requires a large number of experimental units and all the experimental units are not 

homogeneous, then some measure of error control is needed. In a randomized block design, the error control measure is 

applied by dividing the experimental units into homogeneous groups and considering all the treatments to be studied in 

each group [2]. The groups are known as blocks, and the experimental units in the blocks are known as plots. Randomized 

block design is a complete block design where v treatments are arranged in b blocks, such that each block contains all the 

treatments once and each treatment is replicated r times. 

2.1. Estimate of a Missing Observation in a Randomized Block Design 

Yates [9] studied that the selection of the value as an estimate for a missing observation depends on the criterion 

of minimizing the error sum of squares [2]. ‘Suppose two observations are missing in a randomized block design,             

with k treatments and r replications. Let these missing observations belong to different blocks and affect different 

treatments and be substituted by the unknowns y1 and y2. Suppose y1 belongs to the j
th

 block of i
th

 treatment and y2 belongs 

to j′ 
th

 block of m
th

 treatment. Let Bj denote the observation total of j
th

 block taking zero for the missing observations. 

Similarly, Bj′ denotes the total of the j′ 
th

 block. Ti and Tm are similar totals for i
th

 and m
th

 treatments respectively.                   

Further, let G denote the grand total of the observations obtained by taking zero for the missing observations.’ 

Incidentally, if only one observation is missing, its estimate can be obtained from the following equation. 

�� = �����	
��
����
����             (1.1) 

If two observations are missing, then their estimates can be obtained from equations given as follows. 

�� = 
����
����������	
����������	
����
�����
�������           (1.2) 

�� = 
����
����������	
�����������	
���
�����
�������           (1.3) 

Once the missing observations are estimated using (1.2) and (1.3), we substitute these values at the missing plots 

and then analyse the data using ANOVA.  

2.2. Regression Analysis 

In Regression Analysis, a functional relationship between the response variable and the explanatory variables 

depicts how changes in the independent variables affect the values of the response variable [3]. The functional relationship 

is modelled on the assumption that some linear relationship between unknown parameters exists. Sometimes, linear 

relationship is not appropriate and non-linear model needs to be fitted. The relationship between the response variable and 

the explanatory variables also helps in estimating the unknown values and predicting the future values.  

3. STUDY METHODOLOGY 

In this paper, we have discussed and compared the estimates of the missing observations obtained by two 

procedures, namely, Design of Experiments and Regression Analysis. Further, we have also compared the analysis 

obtained by ANOVA and Regression Analysis after the missing observations are replaced by their respective estimates. 

The study is in the similar line of Arner [1] and Karen [5]. It is to be noted here that this study is done for the dataset whose 
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format can be expressed interchangeably in both the forms: regression data as well as randomized block design. Moreover,                   

it is to be noted that it would be cost effective if the regression data can be used for forming a layout of a designed 

experiment without actually conducting the experiment itself. This idea may also be applicable in using the regression data 

to estimate the observations which may be missing for certain combinations of the classified data in the context of Design 

of experiments. 

Here to explain the concept, we took two examples which have been considered to justify the relationship 

between two statistical procedures, namely, Analysis of Variance and Regression Analysis. The first example, originally 

requires a regression model to be fitted to two variables A and B, but the data of the problem are such that it can be 

rewritten in the format of a designed experiment with three levels of factor A in the rows and two levels of factor B in the 

columns. Assuming one of the observations in the original data set to be missing and considering that the interaction 

among the factors is not present, the further analysis is conducted. The non-existence of interaction of the factors is 

identified by a regression model that is, fitted to the incomplete dataset using SPSS [8]. The fitted regression model is used 

to estimate the missing value. Next, the regression analysis is conducted on the dataset obtained after putting the estimate 

of the missing value.  

Further, for the same dataset the randomized block design format of the data is considered. The missing value is 

again estimated using RBD and then ANOVA is performed on the dataset by replacing the missing observation with this 

estimate. The results of both the analyses, namely, ANOVA and Regression Analysis are compared. It is found that both 

the analyses of the dataset give similar conclusions. 

The second example belongs to Design of experiment problem where ANOVA is to be performed. However,          

the data of the example are rewritten in the regression format also. Here, two of the observations are assumed to be 

missing, which are estimated by the RBD procedure of missing observation technique. The results of the ANOVA of the 

completed dataset are obtained after putting estimates of the missing values and are compared with the inference of the 

Regression Analysis. The Regression Analysis is conducted on the dataset, obtained after replacing the missing 

observations by the regression estimate of the observations. Here again, it is found that the ANOVA and the Regression 

Analysis of the completed dataset give similar conclusions, respectively. 

Next we have shown a relationship between Analysis of Variance and Regression Analysis techniques. 

4. EXAMPLE 1: [6] 

The following data were collected to determine the relationship between two processing variables and hardness of 

a certain kind of steel. Let Y denotes Hardness (Rockwell 30-T), A denotes Copper Content (percent) and B denotes 

Annealing Temperature (degrees F). 

Table 4.1: Data for Hardness of Steel Affected by two Processing Variables 

Sr. No y A B 

1 78.9 0.02 1000 

2 55.2 0.02 1200 

3 80.9 0.10 1000 

4 57.4 0.10 1200 

5 85.3 0.18 1000 

6 60.7 0.18 1200 
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Here, we assumed that the fourth value of y is missing, that is, the value of the observation corresponding to the 

level combination, copper content of 0.10 percent and annealing temperature 1200 degrees F in the original data is missing. 

This is shown in Table 4.2. 

Table 4.2 Data (With Missing Observation) for Hardness of Steel Affected by Two Processing Variables 

Sr. No y A B 

1 78.9 0.02 1000 

2 55.2 0.02 1200 

3 80.9 0.10 1000 

4 * 0.10 1200 

5 85.3 0.18 1000 

6 60.7 0.18 1200 

 

The following regression model is fitted to the data set of Table 4.2. 

� = �� + ���� + ���� + �            (4.1) 

It is to be noted here that we represent the factors A and B by the variables x1 and x2, respectively, in the 

regression analysis. 

Equivalently, in the matrix form we have  

� = �� + �             (4.2) 

where, � =
�
���

78.955.280.9∗85.360.7(
))*   � =

�
���

1	0.02	10001	0.02	12001	0.10	10001	0.10	12001	0.08	10001	0.08	1200(
))*  � = -������

. 

ε is a random error such that E(ε) = 0, V(ε) = σ
2
 and the {ε} are uncorrelated. 

We have used SPSS [8] to fit a regression model to the data given in Table 4.2. While running the regression 

analysis, interaction AB is also considered. Correlation between Y and A, Y and B, and Y and AB etc. are obtained and 

shown in Table 4.3. We have shown an ANOVA table in Table 4.4. 

Table 4.3: Correlations 

 Y A B AB 

Pearson Correlation 

Y 1.000 .223 -.974 .099 

A .223 1.000 .000 .988 

B -.974 .000 1.000 .123 

AB .099 .988 .123 1.000 

Sig. (1-tailed) 

Y . .359 .003 .437 

A .359 . .500 .001 

B .003 .500 . .422 

AB .437 .001 .422 . 
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Table 4.4: ANOVA Table in Context of Regression Analysis with Missing Observation 

Model Sum of Squares df Mean Square F Sig. 

1 

Regression 676.875 1 676.875 55.535 .005 

Residual 36.565 3 12.188   

Total 713.440 4    

2 

Regression 712.277 2 356.139 612.712 .002 

Residual 1.162 2 .581   

Total 713.440 4    

 

Coefficients of β and their standard errors for both the models are shown in Table 4.5. On using a stepwise 

regression procedure to fit the regression model, variable B is entered under model 1 while variables B and A, both are 

entered under model 2. However, no variables are removed.  

Table 4.5: Coefficients 

Model 
Unstandardized Coefficients 

t Sig. 
β Std. Error 

1 
(Constant) 200.450 17.280 11.600 .001 

B -.119 .016 -7.452 .005 

2 

(Constant) 196.731 3.804 51.722 .000 

B -.119 .003 -34.125 .001 

A 37.188 4.765 7.804 .016 

 

Here, we obtained the R
2
 value for model 1 as 0.949 and the R

2
 value for model 2 as 0.998. The fitted regression 

model for the dataset with a missing observation is approximated as follows: 

�/ = 196.731 + 37.188�� − 0.119��          (4.3) 

Thus the estimated value of y for the missing combination A1B1 is  

�/123�244567 = 196.731 + 37.188 × 0.10 − 0.119 × 1200 = 57.65       (4.4) 

This estimated value of the fourth observation is more or less same as shown in Table 4.1. 

Next, we obtain the estimate of the missing observation, using the expression in (1.1) for a randomized block 

design. The same dataset can be rewritten as a two-way classified design as follows. Factor A is on three levels, namely, 

0.02, 0.10 and 0.18. These levels are coded as 0, 1 and 2, respectively. Similarly, factor B is on two levels, namely, 1000 

and 1200, which are coded as 0 and 1, respectively. Since in regression analysis of the data we found factor B to be highly 

significant, hence we consider factor B as a treatment and factor A as a block in a randomized block design. The RBD 

format of the data is shown in Table 4.6.  

Table 4.6: Randomized Block Design Format of the Data with Missing Observation 

Block (Factor A) 

Treatment (Factor B) 

 0 1 2 9:. 
0 78.9 80.9 85.3 245.1 

1 55.2 * 60.7 115.9 �.; 134.1 80.9 146 361 

 

The estimate of the value of the missing observation can be obtained from  

�/1	< = �����	
��
����
����  
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Here Ti, Bj and G are obtained by taking zero for the missing observation. 

Considering Table 4.6, we have k = 2, r = 3, T2 = 115.9, B2 = 80.9 and G = 361. Thus, 

�/1	< = �×��=.>�?×@�.>�?A��×� = 56.75           (4.5) 

From expressions (4.4) and (4.5) we found that the estimates of the missing observation obtained by regression 

analysis and RBD method are more or less similar. Now, we would analyze the completed dataset, first by putting the 

estimate of missing value given in (4.4) and shown in Table 4.7 by performing regression analysis and secondly,                 

by putting the estimate of the same missing value given in (4.5) and shown in Table 4.10 by conducting ANOVA for RBD. 

Consequently, we have compared the Regression Analysis with ANOVA table.  

Table 4.7 represents the data as regression format data after putting the missing value. 

Table 4.7: Data for Hardness of Steel Affected by Two Processing Variables  

When Missing Observation is Replaced with Regression Estimate 

Sr. No. y A B 

1 78.9 0.02 1000 

2 55.2 0.02 1200 

3 80.9 0.10 1000 

4 57.65
*
 0.10 1200 

5 85.3 0.18 1000 

6 60.7 0.18 1200 

 

The SPSS output of the regression analysis of the above dataset is as follows. The ANOVA; and the β coefficients 

and their standard errors are shown in the Tables 4.8 and 4.9 respectively. 

Table 4.8: ANOVA 

Model Sum of Squares df Mean Square F Sig. 

1 

Regression 853.234 1 853.234 93.186 .001 

Residual 36.625 4 9.156   

Total 889.859 5    

2 

Regression 888.636 2 444.318 1.090E3 .000 

Residual 1.223 3 .408   

Total 889.859 5    

 

Table 4.9: Coefficients 

Model 
Unstandardized Coefficients 

t Sig. 
β Std. Error 

1 
(Constant) 200.950 13.645 14.727 .000 

B -.119 .012 -9.653 .001 

2 

(Constant) 197.231 2.906 67.870 .000 

B -.119 .003 -45.758 .000 

A 37.187 3.990 9.321 .003 

 

From Table 4.9, we can say that both the factors A and B are significant for both the models 1and 2. It is to be 

noted here that the interaction AB is not even included in the model. When only variable B is entered in model 1,             

R
2
 is 0.959, however, when variable A is also entered along with variable B in model 2, R

2
 comes out as 0.999.                        

The difference in R
2
 value in both the models is 0.040, which is very small. So we can say that, in model 1 when factor B 

is present R
2
 is 0.959, however, in model 2 when factor A entered with factor B, the R

2
 increased by merely 0.040.                 

Thus we can say that effect of factor A is much less as compared to factor B. 
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Next, we present the completed dataset in the RBD format so as to perform ANOVA. 

Table 4.10: Randomized Block Design Data When Missing Observation is Replaced with RBD Estimate 

   Block (Factor A) 

Treatment 

(Factor B) 

 0 1 2 9:. 
0 78.9 80.9 85.3 245.1 

1 55.2 56.75
* 

60.7 172.65 �.; 134.1 137.65 146 417.75 

 

Here �.. = 417.75 as the missing value is filled up by the estimated value 56.75 given in expression (4.5).  

The model for the randomized block design is given by 

�5; = C + D5 + E; + �5;            (4.6) 

where, µ is general mean effect, ti is the effect of the i
th

 treatment, bj is the effect of the j
th

 block, εij, the error 

component, are random variables assumed to be normally and independently distributed with mean zero and variance σ
2
,               

i = 1, 2, …, k, j = 1, 2, …, r, where k is the number of treatments and r is the number of blocks. For the given example, we 

have k = 2 and r = 3. 

The analysis of the RBD in Table 4.10 is given in the ANOVA Table 4.11. 

Table 4.11: ANOVA Table for Hardness of Steel Affected by Two Processing  

Variables When Missing Observation is replaced with RBD Estimate 

Sources of Variation Sum of Squares Degrees of Freedom Mean Sum of Squares Variance Ratio (F0) 

Treatments (Factor B) 874.8337 1 874.8337 4320.17 

Blocks (Factor A) 37.3225 2 18.6613 92.15 

Error 0.2025 1 0.2025  

Total 912.3587 4   

 

Here, from Table 4.11, it is found that both the factors A (Copper Content) and B (Annealing Temperature) are 

significant in affecting the hardness of Rockwell 30-T steel. The factor A is significant while factor B is highly significant. 

The result is similar to what has been observed in regression analysis in Table 4.9. 

Thus, we conclude that the result of Regression Analysis is the reflection of the inference drawn from the 

Analysis of Variance in context of the design of the experiment, which is completed by the estimated value. Here, it is 

being observed that Regression Analysis and Analysis of Variance are complementary to each other. As such regression 

model can be used to estimate the missing observations from a missing plot experiment and then usual analysis can be 

performed. To authenticate this observation, another example has been considered, where number of missing observations 

is two. 

5. EXAMPLE 2: [7] 

An industrial engineer is conducting an experiment on eye focus time. He is interested in the effect of the distance 

of the object from the eye on the focus time. Four different distances are of interest. He has five subjects available for the 

experiment. Because there may be differences between individuals, he decides to conduct the experiment in a randomized 

block design. The data obtained are shown below in Table 5.1.  
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Table 5.1: Randomized Complete Block Design for the Eye Focus Time Experiment 

Distance (ft) 
Subject 

1 2 3 4 5 

4 10 6 6 6 6 

6 7 6 6 1 6 

8 5 3 3 2 5 

10 6 4 4 2 3 

 

Here, it is assumed that the values of two observations corresponding to pairs (6, 1) and (10, 4) are missing,            

where in the bracket, the first digit shows the distance while the second digit shows the subject. We call them missing plot 

experiments. The data are given in the Table 5.2.  

Table 5.2: Randomized Block Design (With Missing Observations) for the Eye Focus Time Experiment 

Distance (ft) 
Subject 

1 2 3 4 5 

4 10 6 6 6 6 

6 y1 6 6 1 6 

8 5 3 3 2 5 

10 6 4 4 y2 3 

 

Using equations (1.2) and (1.3), we estimate the missing values of the corresponding observations for the given 

RBD. The estimated values of the missing observations are 
�/��1	< = 7.63	GHI	
�/��1	< = 1.45      (5.1) 

Substituting these estimates for the missing values and performing ANOVA on the completed dataset,                 

the following result is obtained and is shown in Table 5.3.  

Table 5.3: Analysis of Variance of Missing Observations  

Experiment in Context of Design of Experiment 

Sources of Variation Sum of Squares Degrees of Freedom Mean Sum of Squares Variance Ratio (F0) 

Distance 34.6856 3 11.5619 7.75 

Subject 41.4936 4 10.3734 6.96 

Error 14.9139 10 1.4914  

Total 91.0931 17   

 

Viewing Table 5.3 it is observed that both treatment effects and block effects are significant. It is found that the 

four different distances of the object from the eye lead to different focus times for the eye. 

The above analysis can be compared with the results of the regression analysis conducted on the same data 

rewritten in the following regression format, shown in Table 5.4.  

Table 5.4: Data (With Missing Observations) for the Eye Focus Time Experiment 

Sr. No y Treatments Blocks 

1 10 4 1 

2 6 4 2 

3 6 4 3 

4 6 4 4 

5 6 4 5 

6 y1 6 1 

7 6 6 2 

8 6 6 3 

9 1 6 4 
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Table 5.4: Contd., 

Sr. No y Treatments Blocks 

10 6 6 5 

11 5 8 1 

12 3 8 2 

13 3 8 3 

14 2 8 4 

15 5 8 5 

16 6 10 1 

17 4 10 2 

18 4 10 3 

19 y2 10 4 

20 3 10 5 

 

The regression analysis of the data is performed with SPSS. We found that the Stepwise regression procedure 

does not include the subject variable in the model. In Stepwise method inclusion or removal of one independent variable is 

done at each step, based (by default) on the probability of F (p-value). The default probability of F for entering the variable 

is 0.05 and that for removing the variable is 0.10. So, when we tried to fit the regression model by Stepwise procedure 

subject variable is not entered in the model. Also, the R
2
 value of this model is very low i.e. 0.277. So we tried to fit the 

regression model with the Enter regression procedure. In Enter regression method all independent variables are entered 

into the equation in one step. This led to a better regression model with an R
2
 value as 0.425. The fitted regression model 

using the Enter method is shown in Table 5.5 and Table 5.6.  

Table 5.5: ANOVA 

Model Sum of Squares df Mean Square F Sig. 

1 

Regression 30.474 2 15.237 5.534 .016 

Residual 41.304 15 2.754   

Total 71.778 17    

 

Table 5.6: Coefficients 

Model 
Unstandardized Coefficients 

t Sig. 
β Std. Error 

1 

(Constant) 10.027 1.595 6.288 .000 

Distance -.500 .176 -2.847 .012 

Subject -.553 .282 -1.964 .068 

 

It is to be noted here that the regression analysis is performed on the missing data and it is observed that subject 

effects seem to be insignificant at 5% level of significance. It would be interesting to note the results when the regression is 

performed on the completed dataset by putting the regression estimates of the missing values. The expression of the 

regression model for the missing observation dataset is as follows: 

�/ = 10.027 − 0.500�� − 0.553��           (5.2) 

Here, in the regression analysis, the representation of the distance variable is done by the variable x1 and that of 

the subject variable is done by the variable x2.  

The estimated values of the missing observations using the regression model are:  


�/��123 = 6.474	GHI	
�/��123 = 2.815           (5.3) 
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From expressions (5.1) and (5.3) it is seen that the estimates of the missing observations obtained from 

randomized block design method and regression analysis techniques, respectively, are nearby the actual values of the 

observations, i.e. �� = 7	GHI	�� = 2.  
The estimated values obtained from regression analysis are now substituted in place of missing observations and 

regression analysis is performed on the complete dataset. The analysis is given as follows in the Tables 5.7 and 5.8. 

Table 5.7: ANOVA 

Model Sum of Squares df Mean Square F Sig. 

1 

Regression 25.029 1 25.029 8.413 .010 

Residual 53.550 18 2.975   

Total 78.579 19    

2 

Regression 37.276 2 18.638 7.671 .004 

Residual 41.304 17 2.430   

Total 78.579 19    

 

Table 5.8: Coefficients 

Model 
Unstandardized Coefficients 

t Sig. 
β Std. Error 

1 
(Constant) 8.366 1.267 6.601 .000 

Distance -.500 .172 -2.901 .010 

2 

(Constant) 10.026 1.363 7.354 .000 

Distance -.500 .156 -3.210 .005 

Subject -.553 .246 -2.245 .038 

 

From Table 5.8, it can be viewed that using the Stepwise regression procedure only distance variable is entered 

under model 1 while under model 2 subject variable is also entered along with distance variable. For model 1, the R
2
 value 

is 0.319 and for model 2, the R
2 

value is 0.474. Moreover, the distance effects and subject effects both are significant.     

Thus the four different distances of the object from the eye lead to different focus timings of the eye. This inference is 

similar to what we obtained in the Analysis of Variance of the RBD with missing observations filled by the RBD 

estimates. 

Remarks 

We have noticed here that the analysis of variance of the dataset obtained after replacing the missing values with 

the RBD estimates, given in the ANOVA Table 5.3 and the above regression analysis of the dataset obtained after 

replacing the missing values with the regression estimates, given in Table 5.8, both converge to the same results. Distance 

and subject effects are found to be significant. Thus, it creates confidence in using a regression model to estimate the 

observations which may be missing for certain plots in a randomized block design experiment. This idea may be applied 

for using the regression data for forming a layout of a designed experiment (if the format of the data permits), without 

actually conducting the experiment itself. 

6. CONCLUSIONS 

Thus, regression analysis is shown to be helpful in filling up the missing data in a randomized block design 

experiment and carrying out the analysis. Moreover, the datasets of randomized block design and regression format can be 

interchangeably used for analysis purposes which would be cost effective procedure for quality improvement.  
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